Remarks on Ramanujan’s inequality concerning the prime counting function

نویسندگان

چکیده

Abstract In this paper we investigate Ramanujan’s inequality concerning the prime counting function, asserting that ? ( x 2 ) < e log \pi \left( {{x^2}} \right) < {{ex} \over {\log x}}\pi {{x e}} for x sufficiently large. First, study its sharpness by giving full asymptotic expansions of left and right hand sides expressions. Then, discuss structure inequality, replacing factor {x x}} on side - h - h}} a given h , numerical e positive ?. Finally, introduce inequalities analogous to inequality.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Means of the Values of Prime Counting Function

In this paper, we investigate the means of the values of prime counting function $pi(x)$. First, we compute the arithmetic, the geometric, and the harmonic means of the values of this function, and then we study the limit value of the ratio of them.

متن کامل

ON A SUM INVOLVING THE PRIME COUNTING FUNCTION π(x)

An asymptotic formula for the sum of reciprocals of π(n) is derived, where π(x) is the number of primes not exceeding x. This result improves the previous results of De Koninck-Ivi´c and L. Panaitopol. Let, as usual, π(x) = px 1 denote the number of primes not exceeding x. The prime number theorem (see e.g., [2, Chapter 12]) in its strongest known form states that (1) π(x) = li x + R(x), with (...

متن کامل

Concerning the frame of minimal prime ideals of pointfree function rings

Let $L$ be a completely regular frame and $mathcal{R}L$ be the ring of continuous real-valued functions on $L$. We study the frame $mathfrak{O}(Min(mathcal{R}L))$ of minimal prime ideals of $mathcal{R}L$ in relation to $beta L$. For $Iinbeta L$, denote by $textit{textbf{O}}^I$ the ideal ${alphainmathcal{R}Lmidcozalphain I}$ of $mathcal{R}L$. We show that sending $I$ to the set of minimal prime ...

متن کامل

Some remarks on generalizations of classical prime submodules

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. Suppose that $phi:S(M)rightarrow S(M)cup lbraceemptysetrbrace$ be a function where $S(M)$ is the set of all submodules of $M$. A proper submodule $N$ of $M$ is called an $(n-1, n)$-$phi$-classical prime submodule, if whenever $r_{1},ldots,r_{n-1}in R$ and $min M$ with $r_{1}ldots r_{n-1}min Nsetminusphi(N)$, then $r_{1...

متن کامل

Remarks on a paper of Ballot and Luca concerning prime divisors of a f ( n ) − 1

Let a be an integer with |a| > 1. Let f(T ) ∈ Q[T ] be a nonconstant, integer-valued polynomial with positive leading term, and suppose that there are infinitely many primes p for which f does not possess a root modulo p. Under these hypotheses, Ballot and Luca showed that almost all primes p do not divide any number of the form a−1. More precisely, assuming the Generalized Riemann Hypothesis (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematics

سال: 2021

ISSN: ['2336-1298', '1804-1388']

DOI: https://doi.org/10.2478/cm-2021-0014